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Abstract—LiDAR sensors are used for mapping tasks, LiDAR
odometry or 3D environment reconstruction. Several of them
count with a high number of vertical layers, which increase
their price and prevents research groups from carrying out
experiments and scientific advances. In this paper, we propose a
method for augmenting point cloud data by bilinear interpolation
in a Spherical Range Image. Our method improves others on
the state-of-the-art by means of standard deviation filtering of
the newly generated layers. The system operates at a frequency
greater than 10 Hz for data interpolation up to 20 times.
In addition, we present two applications for our approach
such as LiDAR odometry and LiDAR-Camera fusion, obtaining
better results than others that do not apply data augmentation.
Finally we make available to the scientific community a package
development on ROS (Robot Operating System). The code is
available at https://github.com/EPVelasco/lidar-camera-fusion

Index Terms—LiDAR, sensor fusion, LiDAR odometry, bilin-
ear interpolation.

I. INTRODUCTION AND RELATED WORKS

Light Detection And Ranging (LiDAR) technology has been
used in recent years in the field of robotics for autonomous
driving. Its characteristics of generating point clouds using
optical waves have the potential to achieve better accuracy in
detecting at indoor or outdoor environments [1], [2]. One of
the mostly used sensors of this kind in the autonomous robotics
are those having a 360-degree Field Of View (FOV) [3]–[5].
They are marketed depending on the resolution and number
of layers on the vertical axis. Generally, a higher number of
layers represent a higher price. That is why several works that
include them are performed with less-layer sensors [6]–[9].

Research work was funded by the Valencian Regional Government through
the PROMETEO/2021/075 project and the Spanish Government through the
Formación del Personal Investigador [Research Staff Formation (FPI)] under
Grant PRE2019-088069.

Shan et al. have proposed a method that increases the
number of layers of a LiDAR sensor [10]. On it, the authors
increase the resolution of the LiDAR by projecting a point
cloud onto a range image and increasing the resolution of
that image using a deep neural network. Then, this image
is converted back to a point cloud, which is denser than the
original one. In this way, the virtual augmentation generated
data can convert the one with a few layers into one with more.
A method that does not use neural networks is [11], where
the authors use a 4-channel Spherical Range Image (SRI)
(x, y, z and intensity) of the point cloud. They interpolate
the data in the empty space by calculating both the distance
between pixels and the range values among the six nearest
neighbours points to preserve the original object shapes during
the reconstruction process.

In this work, we use a Velodyne VLP-16 rotating LiDAR
sensor that has 16 layers to augment its number of layers
using bilinear interpolation. By converting the point cloud
to an SRI, we perform data augmentation with image plane
interpolation. In addition, to reduce the noise generated during
the process, we apply a point cloud filtering on each layer.
Paying attention to the standard deviation between layers
generated from the image depth data, we determine if the
points generated virtually could be part of the real scenario.
The experiments performed on point cloud interpolation in the
image plane show satisfactorily that the data augmentation can
help to improve other robotic areas that use this type of sensors
such as LiDAR-Camera fusion, LiDAR odometry or mapping.

This work in progress is organized as follows: section II
explains how we implemented our interpolation algorithm,
converting the point cloud to image and augmenting it with a
bilinear interpolation in order to finish with its filtering in the
image plane, sec. III shows different experiments run with the
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images obtained by applying the proposed algorithm and sec.
IV summarises the paper and comments some future works.

II. METHODOLOGY

The proposed method consists of the following steps. First,
we convert the input point cloud into a SRI and we apply
bilinear interpolation on the plane image. Then, we filter
the generated image by using the standard deviation between
each generated layer. Finally, we convert that interpolated and
filtered SRI back to a point cloud that will be denser than
the original input. Finally, in the experiments sec. III, we
propose 3 experiments with our method for augmenting data
from the aforementioned LiDAR sensor. The first one is the
point cloud interpolated on an RGB image. The next one is
LiDAR-Camera fusion with interpolated point clouds, where
each point in the point cloud has a color channel. The last one
is on LiDAR odometry with a point cloud interpolated with
our method.

A. LiDAR to spherical range imaging

The interpolation algorithm requires a projection from the
input point cloud onto an SRI. To convert this point cloud into
a SRI, each layer of the LiDAR is transformed into a row of
the SRI, and each column is the horizontal viewing angle of
the LiDAR. In our case, the FOV is 360 degrees. Once the row
and column coordinates of each image element are obtained,
the value of each pixel is the depth of each point obtained
from the LiDAR. In this way, we convert an R3 point cloud
into an R2 range image as shown in the Fig. 1.

(a) Point cloud to range image

(b) Original Point cloud

Fig. 1: Conversion from point cloud (a) to SRI (b) with a
resolution of 16x720. The number of rows corresponds to the
number of laser layers and the number of columns to the 0.5
degrees resolution for the FOV of the used LiDAR sensor.

B. Data augmentation with bilinear interpolation

Using the range image obtained from the transformation
of the point cloud, a bilinear interpolation is performed to
virtually increase the number of LiDAR layers. To do this, the

original image data is saved in an array and we use the bilinear
interpolation method (interp2) of the armadillo library [12].
Fig. 2 shows the linearly interpolated image 5, 10 and 20 times.
In this way, we can linearly increase the number of sensor
layers by interpolating them. In order to easily reconstruct the
new interpolated point cloud, we generate an array with the
z-components, which is interpolated with the same method as
the SRI.

(a) Without Interpolation

(b) With 5-layer interpolation

(c) With 10-layer interpolation

(d) With 20-layer interpolation

Fig. 2: SRI linearly interpolated 5, 10 and 20 times.

Subsequently, having interpolated and filtered the SRI III and
its zzz components, we calculate the new points of the generated
virtual layers. For this, the x-components are calculated as
xxx =

√
III − zzz · cos(ωωω) and the y-components as yyy =

√
III − zzz ·

sin(ωωω). In both components, ωωω is determined by the column
value transformed into a value between π and −π. Fig. 3
shows the reconstruction of the interpolated images in a new
point cloud.

(a) Without Interpolation (b) With 5-layer interpolation

(c) With 10-layer interpolation (d) With 20-layer interpolation

Fig. 3: Point cloud reconstruction with SRI on different
interpolation values. The red points represent the original point
cloud and the blue ones the new generated points.

C. Filtering of the interpolated point cloud

When data interpolation is performed on the image plane to
virtually create LiDAR layers, it generates points that could
not be part of the real environment. As shown in Fig. 3c and
Fig. 3d, this series of points are given when performing linear
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interpolation. Some of them are far away in the reality but
together on the image plane. Our interpolation method works
well for vertical objects such as walls, poles or trees, but has
the problem of generating a trail of points when interpolating
layers between objects that are not distant from each other.
Therefore, we have implemented a filter based on the standard
deviation σ between the interpolated points, determined as
σ2 = 1

N

∑n
0 (xn − u)2. Where u and N are the average and

number of elements analyzed, respectively.
In this way, when examining the interpolated data between

each layer, the data with a higher standard deviation value than
the calculated one is filtered out. Fig. 4 shows the filtering of
data with standard deviation limit values of 1, 10, and 100 for
a point cloud interpolated 20 times.

(a) Point cloud without layer filtering. (b) Layer filtering with. σ = 100

(c) Layer filtering with. σ = 10 (d) Layer filtering with. σ = 1

Fig. 4: Standard deviation filtering analysis of interpolated
layers.

III. EXPERIMENTS

In this section, we detail the experiments performed with a
non-interpolated and an interpolated to different values point
cloud.

A. Point cloud on Image

For this set of experiments, we have calibrated the camera
and the LiDAR sensor with the method shown in [13]. This
calibration method returns the homogeneous transformation
matrix between the LiDAR and an RGB camera. We used a
Intel® RealSense™ D435i and a Velodyne VLP-16 sensor.

In Fig. 5, we show a point cloud projected onto a RGB
image. It can be seen that the interpolated point cloud allows to
generate virtually a large number of points to the environment.
This experiment has been tested in paper [14], where the depth
of domestic waste in outdoor environments is estimated.

B. LiDAR-Camera Fusion

Having the homogeneous transformation matrix between
the LiDAR-Camera, the interpolated point cloud can be re-
constructed with a color channel at each point. Thus, Fig. 6

shows the LiDAR-Camera fusion on which the interpolated
point cloud is colored. This method can be used for getting a
denser environment mapping.

(a) Original point cloud projected on
the image plane.

(b) Point cloud 5 times interpolated.

(c) Point cloud 10 times interpolated. (d) Point cloud 20 times interpolated.

Fig. 5: Point cloud interpolated at different values and pro-
jected on the image plane.

(a) Point cloud without interpolation. (b) Point cloud 5 times interpolated.

(c) Point cloud 10 times interpolated. (d) Point cloud 20 times interpolated.

Fig. 6: LiDAR-Camera fusion with interpolated point clouds
at different values.

C. LiDAR Odometry with an interpolated point cloud

LiDAR odometry is a process used in robotics and au-
tonomous navigation to estimate the position and orientation
of a moving vehicle using LiDAR sensors [15]. In these
experiments, we use the LiDAR odometry F-LOAM method
[9] with a non-interpolated and an up to 10 times interpolated
point cloud set. This set is from a 151 meters closed loop,
which has been traversed 4 times.

As shown in Fig. 7a, by interpolating the point cloud by
10 times, the pose and orientation estimation of the F-LOAM
method generates almost a zero deviation in all 3 axes. In
contrast, in the experiments without interpolating the point
cloud, the error is accumulated in the z-axis as the robot moves
forward in the circuit.
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In addition, as shown in Fig. 7b, using the interpolated
point cloud decreases the pose estimation time of the F-LOAM
method. Despite having a larger number of points to process,
the optimizer that estimates the position of the robot decreases
its computation time.

(a) Comparison of LiDAR odometry with interpolated and non-interpolated
point clouds.

(b) LiDAR odometry with a 10-layer interpolation

Fig. 7: Trajectory and pose estimation times generated by
F-LOAM after 4 loops of the robot around the track. The
results of path A are the experiments performed with the raw
point cloud. The results of path B, on the other hand, are the
experiments with the point cloud interpolated up to 10 times.

IV. CONCLUSION AND FUTURE WORKS

The proposed method achieves the interpolation of a 16-
layer LiDAR by converting the input point cloud onto a
SRI by using bilinear interpolation. In addition, a standard
deviation filter is applied so as to remove the noisy data
generated during the interpolation. The generated point cloud
significantly improved the results on LiDAR odometry and
LiDAR-Camera fusion experiments. As future work, we are
working on improving the data interpolation method using
machine learning techniques and improving the filtering of
virtual data with nearest neighbor groupings.

REFERENCES

[1] T. Raj, F. Hanim Hashim, A. Baseri Huddin, M. F. Ibrahim, and A. Hus-
sain, “A survey on lidar scanning mechanisms,” Electronics, vol. 9, no. 5,
p. 741, 2020. doi:https://doi.org/10.3390/electronics9050741

[2] N. Li, C. P. Ho, J. Xue, L. W. Lim, G. Chen, Y. H. Fu, and L. Y. T.
Lee, “A progress review on solid-state lidar and nanophotonics-based
lidar sensors,” Laser & Photonics Reviews, vol. 16, no. 11, p. 2100511,
2022. doi:https://doi.org/10.1002/lpor.202100511

[3] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE CONFERENCE
ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR),
ser. IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2012, pp. 3354–3361, iEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Providence, RI, JUN 16-21, 2012.
doi:10.1109/CVPR.2012.6248074

[4] I. Maksymova, C. Steger, and N. Druml, “Review of lidar
sensor data acquisition and compression for automotive applica-
tions,” in Proceedings, vol. 2, no. 13. MDPI, 2018, p. 852.
doi:https://doi.org/10.3390/proceedings2130852

[5] I. del Pino, M. A. Munoz-Banon, S. Cova-Rocamora, M. A. Con-
treras, F. A. Candelas, and F. Torres, “Deeper in blue,” Journal of
Intelligent & Robotic Systems, vol. 98, no. 1, pp. 207–225, 2020.
doi:https://doi.org/10.1007/s10846-019-00983-6

[6] G.-M. Lee, J.-H. Lee, and S.-Y. Park, “Calibration of vlp-16 lidar
and multi-view cameras using a ball for 360 degree 3d color map
acquisition,” in 2017 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI), 2017, pp. 64–69.
doi:10.1109/MFI.2017.8170408

[7] P. Zhou, X. Guo, X. Pei, and C. Chen, “T-loam: Truncated
least squares lidar-only odometry and mapping in real time,”
IEEE Transactions on Geoscience and Remote Sensing, 2021.
doi:10.1109/TGRS.2021.3083606

[8] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized
lidar odometry and mapping on variable terrain,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 4758–4765. doi:10.1109/IROS.2018.8594299

[9] H. Wang, C. Wang, C.-L. Chen, and L. Xie, “F-loam : Fast lidar
odometry and mapping,” in 2021 IEEE/RSJ INTERNATIONAL CON-
FERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), ser.
IEEE International Conference on Intelligent Robots and Systems.
IEEE; RSJ, 2021, pp. 4390–4396, iEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), ELECTR NETWORK, SEP
27-OCT 01, 2021. doi:10.1109/IROS51168.2021.9636655

[10] T. Shan, J. Wang, F. Chen, P. Szenher, and B. Englot,
“Simulation-based lidar super-resolution for ground vehicles,”
Robotics and Autonomous Systems, vol. 134, p. 103647, 2020.
doi:https://doi.org/10.1016/j.robot.2020.103647

[11] J. You and Y.-K. Kim, “Up-sampling method for low-resolution li-
dar point cloud to enhance 3d object detection in an autonomous
driving environment,” Sensors, vol. 23, no. 1, p. 322, 2023.
doi:10.1016/j.eswa.2022.118624

[12] C. Sanderson and R. Curtin, “Armadillo: a template-based c++ library
for linear algebra,” Journal of Open Source Software, vol. 1, no. 2, p. 26,
2016. doi:10.21105/joss.00026 1

[13] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna, “LiDAR-
Camera Calibration using 3D-3D Point correspondences,” ArXiv e-
prints, May 2017. doi:https://doi.org/10.48550/arXiv.1705.09785
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