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Dual manipulation is a discipline that needs precise programming and a highly
accurate environment definition. Not only the static objects on the manipulation
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Abstract. In learning robotics, techniques such as Learning from
Demonstrations (LfD) and Reinforcement Learning (RL) have become
widely popular among developers. However, this approximations can
result in inefficient strategies when it comes to train more than one agent
interacting in the same space with several objects and unknown obstacles.
To solve this problematic, Reinforcement Learning from Demonstration
(RLID) allows the agent to learn and evaluate its performance from a
set of demonstrations provided by a human expert while generalising
from them using RL training. In dual-robot applications this approach
is suitable for training agents that perform collaborative tasks. For this
reason, a dual-robot haptic interface has been designed in order to pro-
duce dual manipulation trajectories to feed a RLfD agent. Haptics allows
to perform high quality demonstrations following an impedance control
approach. Trajectories obtained will be used as positive demonstrations
so the training environment can generate automatic ones. As a result,
this dual-robot haptic interface will provide a few trajectory demonstra-
tions on dual manipulation in order to train agents using RL strategies.
The aim of this research is to generate trajectories with this dual-robot
haptic interface to train one or more agents following RLfD paradigms.
Results show that trajectories performed with this interface present less
error and deviation than others performed with a non-haptic interface,
increasing the quality of the training data.
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zone must be properly modeled, but both robots must know in which position
are as well as how to manipulate an object. For this reason, traditional control
architectures may not result appropriate for this kind of scenarios.

A possible approach is Learning from Demonstration (LfD), a technique that
consists in teaching an agent of any kind to perform a specific task or movement
based on demonstrations on how to do it. This learning strategy is usually used
to teach the robot how to do complex tasks first performed by an expert [26].
This approximation makes it easier for developers because it does not require
any kind of high specialization and knowledge in programming or robotics [1,19].

However, in manipulation tasks LfD needs a large dataset of trajectories
performed by an expert, so one of the main problems of these methods is data
generation. This paradigm needs a huge amount of demonstrations in order to
perform properly in dynamic environments with obstacles and other agents, so
obtaining all the data manually may take a very long time and can be sub-
optimal due to human error.

On the other hand, Reinforcement Learning (RL) is a machine training
method that consists in rewarding certain behaviour in order to accomplish
certain goal, so an agent can learn from experience a set of actions and try to
generalise from them. This approach offers a high grade of flexibility because an
agent can learn how to develop a task in real environments without the need of
a person to indicate which action to do next or determine all possible rules the
machine must follow [11,14].

In robotics, this type of training needs to explore a vast space of possibilities
and configurations in order to achieve certain grade of behaviour accomplish-
ment. As a consequence, it takes long time and resources to generate all possible
scenarios and to explore the horizon of possibilities so that the system can con-
verge to stability, and may not reach that point. Also, transitions between sim-
ulation and real environments may be troublesome due to differences between
both scenarios [29].

In order to solve this problem, information obtained from demonstrations
about object manipulation with multiple robots can be used to generate more
trajectories automatically. This way, a RL training can start with an approxima-
tion on how to perform the manipulation, reducing the training time exponen-
tially and making it easier to converge to a desired behaviour. Demonstrations
from the expert serve as a guide to the learning agent with only few of them.
In addition, the RL can generalise to a more optimal behaviour using those tra-
jectories as a reference. This technique is called Reinforcement Learning from
Demonstration (RLfD) [18]. This kind of strategies are capable of correcting
sub-optimal demonstrations made by the expert, resulting in better results than
a human operator can obtain.

The aim of this work is to build a dual-robot haptic interface using an
impedance control approach [16] in order to train a RLfD algorithm so it can
perform dual manipulation tasks such as grasping or moving without colliding
with each other. This way, the system is able to generate trajectories for training
RLfD agents in simulation and real environments with two Phantom Omni Bun-
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dle devices as masters together with URb5e robotic manipulators as slaves. The
proposed system moves away from strategies that use visual or kinestesic data,
which need of extra processing to work properly. These trajectories, serving as
demonstrations, will be used as a reference to generate more examples auto-
matically for RLfD training. In addition, this interface is able to switch from
simulation environment to a real one without need of changing the system, so
both virtual and real trajectories can be performed and stored. The main contri-
bution of this paper would be the generation of trajectories with a dual-haptic
robot interface to train a RLfD agent.

This paper is organised as follows: Sect.2 mentions several works related to
the topic of this paper, Sect. 3 presents the designed system while Sect. 4 shows
some result and discussion of the performance of the system, Sect. 5 discuss the
system advantages and limitations. Finally, Sect.6 deals with future planned
work to use the proposed system.

2 Related Work

Learning methods involving RL and LfD have been widely studied among devel-
opers, producing a large amount of literature. Teleoperation and haptics presents
a similar situation. On this section, related work is presented to contextualizing
the topic of this research.

2.1 Collaborative Robots and Teleoperation

In the field of robotic manipulation, some tasks are meant to be performed by
two or more robots. Those are collaborative tasks that may involve more than
one agent. In these cases, robots must learn how to work together in order to
accomplish the same goal. Al strategies allow researchers to teach multiple robots
how to behave in a collaborative environment with humans, e.g. the research [6]
uses programming from demonstration techniques to indicate a robot how to
grasp elements with visual information. In addition, some works such as [27]
propose a dual-robot collaborative system capable of manipulating objects syn-
chronously. Other works and researches focus on applying haptic methods with
assisted guidance when operating a robot at the same time, e.g. [21]. Moreover,
several researches use direct control architectures to send commands to one or
more robots using arm tracking and shared control in [13] or applying visual
detection to determine the position of both hands in order to send commands
to a pair of robots in [7].

Despite the works previously mentioned, studies have shown that teaching
the robot using data from teleoperation movements may improve the quality of
the training and later performance. It all comes to ensure smoothness and preci-
sion within the movements, so acquiring trajectory samples with the robot may
produce high quality information [22] and it guarantees the operator’s security
during data acquisition [8]. In order to obtain the trajectories generated by a
human, a teleoperation approach is needed, which comes with a huge variety of
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possible solutions. Haptic has proven to be a suitable one for controlling robotic
arms, as well as for generating training samples destined to perform LfD agents
training. The force feedback provided by such architecture allows the opera-
tor to execute smooth and precise movements, resulting on higher quality data
for training. In works such as [24] researchers present new methods on how to
estimate the geometry of an object relying on haptic information with a dual-
robotic system. Other works propose a dual teleoperation system to perform
surface activities on planar objects using a multi-modal architecture involving
Motion Capture (MoCap) and haptic information, e.g. [9]. Also, in [4] researchers
study how to improve manipulation of an object using a teleoperation system
controlled by wearable masters along with haptic feedback. Studies show that
operators become more confident with this type of systems.

2.2 Learning AI Methods

As for the automatic learning methods, several papers have been published on
LfD strategies. On them, different researchers present a wide variety of solutions
involving this type of algorithms. Some works apply this methods in order to
train an agent so it can send movement commands to a robot as in [12], where
LfD is used to train a model that detects head movement of a person to control
a robot through vision. In addition, other papers like [25] proposes a system that
learns movements from electromyography signals to perform complex human-like
actions. Also, it is important to consider that most of LfD agents are trained with
visual demonstrations of human movements using MoCap, e.g. in [10], where
a dual robotic arm system learns how to perform assembly tasks, taught by
position and orientation data.

On RL, works such as [15] study obstacle avoidance using an anthropomor-
phic arm and RL techniques. The agent learns how to perform obstacle avoidance
thanks to a combination of Deep Deterministic Policy Gradient (DDPG) and
Hindsight Experience Replay (HER), working with two learning agents at the
same time. One of them is trained to avoid obstacles while the other ensures that
the robot reaches the goal point. Then, on [28] researchers propose a trajectory-
planning method using Deep Reinforcement Learning (DRL) and joint angle
information along with Cartesian coordinates of a robot. A comparison with
Bidirectional Rapidly-Exploring Random Tree (Bi-RRT) algorithm is provided,
improving its performance in simulation environments. Other works like [20]
focus on solving simulation to real gap in RL applications. This research relies
on visual mapping from a real environment to the simulation training. Results
show a highly accurate performance on simulation and real environments.

Some works such as [17] point out that using demonstrations as part of a
RL training would overcome exploration problems and reduce the time taken
to obtain training data. Also, some works use Hierarchical Deep Q-Networks
(H-DQN) and data augmentation to perform LfD training with higher results
than other architectures e.g. Deep Q-Networks (DQN) [3]. As a consequence,
positive demonstrations generated by an expert become the starting point for
a RL training, reducing the training time and exploration. In addition, in [23]
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a combination of a RL and a LfD system is developed to teach a robotic arm
certain motor skills related with non-prehensile manipulation. This research uses
kinesthetic trajectories to start RL training.

3 System Description

The system is built upon a dual-robot haptic interface that allows the operator
not only to control a pair of robots remotely and manipulate objects with them,
but to generate and store trajectory samples that will be later used to perform
a RLfD training using DQN architectures.

As for the haptic control loop, a Cartesian Position-Position method is used.
This architecture uses global position references sent to the robot, with posi-
tions from the haptic device being up-scaled to match the robot’s workspace
dimensions. This data is computed internally, providing torque references to each
motor using individual joint controllers. However, the masters and slaves present
different kinematics, so joint references are not suitable for direct control. For
this reason, Cartesian references between master and slave’s Tool Central Point
(TCP) are used as control commands. Then, using the Denavit - Hartenberg
(DH) model [5] of the robot, the Cartesian commands are transformed to joint
references that are later applied to each robot joint. In order to avoid distur-
bances due to instabilities in the operator movement, a median filter is applied
to this last control step, before joint commands are sent to the robot.

Simultaneously, the impedance feedback force loop takes place and force
information is sent to the operator. Due to kinematics differences previously men-
tioned, it is performed using Cartesian values and a Proportional and Derivative
(PD) approach. Next, the forces applied to the master are obtained following (1),
where K, and K, are the proportional and derivative gains of the loop respec-
tively. €(t) is the error between the URbe robot and Phantom Omni Bundle TCP

—

and f(t) is the final force applied to the operator.

i) = K, -ete) + Keg - 230 1)

A triple loop approach is presented in Fig.1, with a control loop on joint
and Cartesian level to each robot, as well as the force feedback to the operator.
Then, a last signal gives the operator visual information about the state of the
robots. As for the variables in Fig.1 and with 7 being 1 or 2, xj; is the desired
position for the one of the robots, gy; represents the desired joint position one
of the URbe and wjg; is the torque command that contains all joint references for
one of them. In addition, ¢; and &; are the current joint and Cartesian position§

of one manipulator. Lastly, f; is the force applied to one of the masters and fz
is the feedback force applied to the operator and calculated with (1).

All joint and TCP position information is recorded after performing a tra-
jectory of dual object manipulation with both robots, so it can be used later
to apply RL{D in a RL environment. With this information, the demonstrations
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provided will be set as a reference point to explore the horizon of possible manip-
ulations, generalising from them and avoiding to start the RL training without
any other information. In addition, it is possible to use traditional samples from
a RL algorithm so other possible trajectories may be evaluated, considering other
configurations. Moreover, trajectories performed by an expert can also be used
as an evaluation sequence during the training episodes and, sometimes, they may
take control of the process to correct deviations from desired behaviours [18].

Local Zone Remote Zone
f, Phantom 1 *a Cartesian o Joint U UR5e 1
Operator N
p (master) | | Controller 1 Controller 1 (slave)
A
¥ [©) 4
% Direct )]
Kinematics 1
[ Cartesian | %, Joint U, UR5e 2 |
Controller 2 Controller 2 slave
%, (©)] g,
Direct (2
Kinematics 2
Image (1)

Fig. 1. Control loop. From outside to inside: (1) Visual feedback loop, (2) Cartesian
position loop for one of the robots, (3) joint position loop for one of the robots.

The Gym platform offers an architecture based on actions and observations
in order to perform all kind of RL, which is commonly used along with PyBullet
direct simulations. For this reason, a learning environment has been designed
and constructed to generate movement samples to be evaluated by the agent,
who will follow a policy based on the information recorded by the dual-robotic
haptic interface mentioned. The trajectories recorded and used to train the agent
involve joint information in position, velocity and torque from the robots and
grippers, as well as TCP Cartesian position and velocity in the world.

4 Experiments

In order to prove the quality of the obtained data involving positional trajec-
tory and haptic information, some experiments and tests were conducted aiming
towards this objective. In addition, comparison with a traditional teleoperation
system is presented following the same goal.

4.1 Grasping Experiments

Both, real and simulation experiments were carried out in order to test the
correct system performance in control, as well as in manipulation tasks, as it is
represented in Fig. 2.
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In Fig.2a both robots are grasping a bleach cleanser from the Yale-CMU-
Berkeley (YCB) [2] object dataset in a simulation environment generated by
using PyBullet. The manipulation is effectuated at the same time in two areas
of the object (top and bottom) laying down in a surface, allowing the operator to
manipulate it coordinating both robots. On the other hand, in Fig. 2b the system
is manipulating a box in a collaborative way, as both robotic arms are taking
part in the process grasping the object at the same time. Moreover, the system
permits passing objects from one robot to another if the operator is dexterous
enough.

(a)

Fig. 2. Collaborative Manipulation experiments in simulation (a) and real environ-
ments (b) using the same architecture on each case.

4.2 Data Acquisition Experiments

Alternatively to the grasps experiments and to demonstrate the correct perfor-
mance of the system in real environments, several trajectories were tested and
recorded for later analysis. The goal is to prove that haptic information improves
the generation of trajectory samples, resulting in more precise and smoother
movements. Figure 3 show the movement of one of the robots on the three global
axis taking as reference the UR5e’s base frame while applying force feedback to
the expert. Figure 3 show that robot’s TCP follows the master commands with
low error and oscillation, allowing the system to generate data of higher qual-
ity and more reliable than other approaches, such as kinematic manipulation
demonstrations from a human or traditional data generation in RL training.

In addition, some other experiments were conducted using the same system
but without applying haptic feedback. This way, the performance between data
generation with and without effort information provided to the operator can be
evaluated. In Fig.3 it is shown a similar trajectory to Fig.4 without applying
haptic feedback.

Comparing the trajectories represented in Figs.3 and 4 it can be concluded
that the second one presents an increase in the error performing the trajectories
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Fig. 3. Reference (red) and output (blue) signals from the XYZ axis
trajectory using the haptic feedback in real environments.
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Fig. 4. Reference (red) and output (blue) signals from the XYZ axis in a teleoperated

trajectory without haptic feedback in real environments.
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Table 1. Evaluation of the system performance with and without haptic loop.

Max. Error (m) | Min. Error (m) | Mean Error (m) | STD (m)
With Haptic 0.026 2e-05 0.00945 0.007
Without Haptic | 0.16 8e-04 0.043 0.026

at first sight. Table 1 quantifies the performance of both cases; with and without
applying haptic loop to the teleoperation.

From Table1 it can be extracted that the data acquired from the system
using haptic loop presents around 50% less error than the same system not
applying effort feedback to the operator. As a consequence, trajectories generated
with this dual-robot haptic interface reflect accurately the desired manipulation
performed by the human, resulting in better results when leading the robot’s
TCP. Moreover, augmented data from trajectories such as in Fig. 3b for example,
will have higher quality and be more reliable than the same demonstration taken
from Fig. 4b.

5 Conclusion

In summary, a dual-robot haptic interface has been built to generate samples
for future RLfD in the field of multiple robot control and object manipulation
involving more than one agent. Moreover, the experiments conducted in real and
simulation environments prove that force feedback improves the performance of
teleoperation by giving the operator precise internal and external information
about the robot’s state and its surroundings.

This approach will cause the system to converge faster to a stable behaviour.
Moreover, manipulation demonstrations from classic RL can be generated to
explore the horizon of possibilities and generalize all possible trajectories that
the system can produce once the training is finished.

6 Future Works

The purpose of this research is to have a dual-robot haptic interface designed
for two robots to perform RLfD with dual robotic arms so as they can work
together in multiple applications. The obtained trajectories will provide positive
demonstrations when establishing innovative learning policies to be achieved by
learning agents. The trajectories from the dual-robot haptic interface will be
used to generate more trajectories, so the training with RL approaches becomes
more effective than using random examples. In addition, expert demonstrations
will be used as a reference to evaluate the robot’s performance while training,
allowing online evaluation without needing of a specific evaluation function.

This training will be aimed towards collaborative tasks like collaborative
movement and dual manipulation, not only between robots but including humans
sharing the same environment.
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