
Robotic approach trajectory using Reinforcement
Learning with Dual Quaternions

Daniel Frau-Alfaro
AUtomatics, RObotics, and Artificial Vision Lab

University Institute for Computer Research
San Vicente, Spain

0009-0000-4098-3783

Ignacio de Loyola Páez-Ubieta
University Institute for Engineering Research

University Miguel Hernández
Elche, Spain

0000-0001-9901-7264

Santiago T. Puente
AUtomatics, RObotics, and Artificial Vision Lab

University Institute for Computer Research
San Vicente, Spain

0000-0002-6175-600X

Edison Velasco-Sánchez
AUtomatics, RObotics, and Artificial Vision Lab

University Institute for Computer Research
San Vicente, Spain

0000-0003-2837-2001

Abstract—Manipulation tasks in robotics usually involve two
phases: an approach to the object and the grasp itself. The first
action allows the robot to reach a certain pose in space that
is likely to allow the object to be manipulated. Reinforcement
Learning (RL) techniques allow a policy to be learned through
experience given a set of states and actions, so this is a powerful
tool for developing controllers for specific tasks such as posi-
tioning the robot in a particular point in space. However, when
manipulating an object, orientation is as relevant as position.
For this reason, a method of RL for positioning the robot’s end
effector in a suitable position and orientation for manipulation
in simulation is presented. This approach models the problem
of computing the distance for the reward function using dual
quaternions parameterisation, an element that can represent the
pose and attitude of a rigid body in Euclidean space in a compact
way without having to apply any constraints.

Index Terms—robotics, manipulation, reinforcement learning,
dual quaternion

I. INTRODUCTION

One of the main tasks when working with robotic manipu-
lators is the handling of objects. This task involves different
phases, as it is performed, namely approximation to the
target, grasping by means of a tool or a robotic hand, and
movement with the grasped object. Hence, one of the main
goals of the Manipulation Task is to make it generalisable for
a large amount of different objects and materials, so that the
algorithms do not depend on the objects being manipulated.

In order to achieve this goal, automatic learning techniques
have become a well-established solution for tackling this prob-
lem. [1] In particular, Reinforcement Learning (RL) produces
solutions suitable for manipulation tasks, thus avoiding the
arduous task of labelling samples, which is a necessary step
in supervised models. RL allows an agent to interact with an
environment with the objective of gathering experience in a

The research work was supported by grant PID2021-122685OB-
I00 funded by MICIU/AEI/10.13039/501100011033 and by
ERDF/EU, as well as by grant Grand PRE2019-088069 funded by
MICIU/AEI/10.13039/501100011033 and ESF Investing in your future.

specific task via reward modelling. Consequently, a controller
for a high-level activity can be trained automatically. [2], [3]

In this work, a RL agent that performs manipulation tasks
using only visual information from a simulated environment is
proposed. Specifically, we aim to achieve two different goals:

• Reach task: it consists of reaching a specific pose with
an orientation in space. This is achieved by using a
dual quaternion formulation, which avoids additional con-
straints on reward modelling. Other representations, such
as Euler angles with euclidean vectors need adaptations
in order to depict the transformations between frames
because they represent different magnitudes; translation
and rotation. In addition, Euler angles present different
issues when representing moving bodies in space, as in
the case of Gimbal Lock. Dual quaternions allow this
problem to be solved thanks to a compact representation.

• Manipulation task: implies the manipulation of the object.
Using the RL agent trained in the reach task, the final
pose is evaluated using classical control techniques. Once
the robot has reached the episode’s end, the gripper is
closed until it detects contact and the object is moved into
a home configuration. The manipulation is considered
successful if it reaches home without falling.

The main contributions of this work are the proposal of a
RL agent to perform manipulation tasks modelled as a reach-
type one, using only visual information of the environment, as
well as the simultaneous translation and orientation positioning
through the use of a dual quaternion formulation for reward
computation during training.

This paper is organised as follows: Section II reviews the
state-of-the-art work on RL with robotic arms, Section III
shows the methodology used in this paper, with RL and dual
quaternion formulation, Section IV explains the setup used, its
modelling and the experiments conducted, Section V shows
the results obtained after performing the tests on the trained

20
24

 7
th

 Ib
er

ia
n

Ro
bo

tic
s C

on
fe

re
nc

e
(R

O
BO

T)
 |

 9
79

-8
-3

50
3-

76
36

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
RO

BO
T6

14
75

.2
02

4.
10

79
68

78

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on January 09,2025 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

agents, and Section VI concludes the paper with the final
reflections together with the proposed future work.

II. PREVIOUS WORKS

When applying RL to robotics, the reach task presents a
challenge to the designed RL agents due to the complexity
involved and the high dimensionality of the states, particularly
when images are included. In [4], [5] agents are trained to
reach an objective point in space by using only their Euclidean
position. In [6], it is demonstrated that RL allows soft robots
with complex models to learn reach actions using Artificial
Neural Networks (ANN) as controllers. These works only
employ the final position as the objective for the robot to reach,
leaving out of the process the end effector orientation which
in most applications can not be ignored.

Other works fulfil the aforementioned Reach Task along
with the orientation one. In [7], Curriculum Learning (CL)
[8] is used to progressively teach an agent how to perform
it. In [9], [10] a framework is presented to achieve position
and orientation in space with precision. However, they tend
to impose restrictions on the movement, resulting in the loss
of Degrees of Freedom (DOF). Alternatively, in [11], [12] the
Reach Task has been developed for high-dimensional spaces
involving six or more DOF. In these papers the orientation is
included in the objective for the RL agent. Nevertheless, the
employed Euler formulation needs to impose restrictions in
order to avoid interpolation issues, along with adjustments for
the position and orientation magnitudes because they present
different units. The proposed approach with dual quaternions
does not require these limitations.

For the Manipulation Task, RL agents are often considered
as an end-to-end model that learns how to perform the task
completely during training. In [13], [14], they use assistive
techniques that help reducing the training time and transferring
the controller to real environments. In contrast, [15], [16] use
other techniques, such as the usage of human demonstrations
from real world tasks, with the objective of learning more
dexterous skills than a simple manipulation, such as spinning a
pen or using a tool. End-to-end models tend to be hard to train
as they require heavy resources. In this work, the agent trained
in a simple Reach Task is used to conduct a Manipulation Task
without any further training.

III. METHODOLOGY

In this section, basic and used RL techniques are introduced,
as well as dual quaternion formulation to represent 6 DOF
transformations and distance computing.

A. Reinforcement Learning Techniques

A RL approach is used in this paper to create a task-oriented
agent that allows the robot to be controlled in order to perform
Reach Tasks. A review of the basic elements of this type
of algorithms and the main agent used in the experiments
[17] [18], known as Soft Actor-Critic, are presented in the
following lines.

1) Basic elements in RL: These methods are based on an
agent that interacts with an environment in order to gather
experience on how to develop certain tasks according to a
reward function. These tasks consist of a sequence of actions
generated according to a certain policy.

The RL approach models the environment as a Markov De-
cision Process (MDP) defined by the tuple M = [S,A,R, T],
where S are the states the agent sees as it interacts with the
environment, A are the actions the agent takes according to a
state in S and its policy π, R is the reward associated with
taking an action in A given a state in S, and T is the transition
rule indicating how the environment changes according to
M : S ×A → S [15].

The goal of the agent is to maximise the cumulative reward
or return at the end of an episode following (1).

R(τ) =

T∑
t=0

γtrt (1)

Where R(τ) is the return obtained following the sequence
of steps τ , T is the number of steps employed to reach the end
of an episode and γ is the discount factor for future rewards.

The Bellman equations are used to estimate the value of the
states the agent visits and the actions it takes. Equation (2),
also known as Value-State function, estimates the value of the
transition from one state to another, while (3), also known
as Action-State function, introduces the application of certain
actions to the transition.

V (st) = E
st+1,at∼π

[r(st, at) + γV (st+1)] (2)

Where V (st) is the value of the state st and r(st, at) is
the reward function. The symbol E indicates that the values
from the Bellman equations are estimations from the optimal
functions.

Q(st, at) = E
st+1

[
r(st, at) + γ E

at∼π
[Q(st+1, at+1)]

]
(3)

Where Q(st, at) is the values of the tuple formed by the
state st and the action at.

2) Soft Actor-Critic: Soft Actor-Critic (SAC) is a Deep
Reinforcement Learning (DRL) algorithm belonging to the
Actor-Critic family of methods, which aims to combine both
Policy Gradient and Q-learning approaches.

The policy is optimised using a simultaneously optimised
value function [19]. In this way, the Actor represents the policy
that produces the actions that are evaluated by the Critic, which
tries to estimate the Value function at the same time. Normally,
SAC optimises two Critics at the same time. This is due to
the tendency of the Actor-Critic methods to overestimate its
actions, so the minimum of the two is used in the update
functions.

This method is also off-policy, meaning that it uses a buffer
B to store previous transitions. This way, every few steps, a
tuple of [st, at, rt, st+1] is sampled from it so as to update the
networks from both the Actor and Critic.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on January 09,2025 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Soft Actor-Critic [17]
1 Input: initial policy parameters θ, Q-function parameters ϕ1, ϕ2,

empty replay buffer B
2 Set target parameters equal to main parameters

ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

3 while not converge do
4 Observe state s and select action a ∼ πθ(·|s)
5 Execute a in the environment
6 Observe next state s′, reward r, and done signal d to indicate

whether s′ is terminal
7 Store (s, a, r, s′, d) in replay buffer B If s′ is terminal, reset

environment state.
8 if it’s is to update then
9 for j in range (however many update) do

10 Randomly sample a batch of transitions,
b = (s, a, r, s′, d) from B

11 Compute targets for the Q-function:
12 // Equation (7)
13 Update Q-functions by one step of gradient descent

using
14

15 ∇ϕi
1

|B|
∑

{s,a,r,s′,d}∈B

(Qϕ,i(s, a)− y(r, s′, d)))2

16 for i = 1, 2
17
18 Update policy by one step of gradient ascent using
19

20 ∇θ
1

|B|
∑(

min
i=1,2

Qϕi
(s, ãθ(s))− αlogπθ(ãθ(s)|s)

)
,

21
22 where aθ(s) is a sample from πθ(·|s) which is

differentiable wrt θ via the reparametrization trick.
23
24 Update target networks with
25
26 ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi

27 end
28 end
29 end

This paper uses the continuous version of the SAC method,
where the Actor outputs two values µθ(st) and σθ(st),
which are used to parameterise a normal Gaussian distribution
ξ ∼ N (0, I) in order to apply gradient descent to the network.
Using this initial distribution, SAC introduces entropy so as to
mitigate the exploration-exploitation trade-off. Thus, the goal
of the agent is not only to maximise the return, but also to
maximise the entropy in the output, as shown in (4).

RSAC(τ) =

T∑
t=0

E
(st,at)∼π

[
γtr(st, at) + αH(π(·|st))

]
(4)

Where H(π(·|st)) is the entropy calculated on the output
distribution, which is regulated by an α parameter, which can
be set as a trainable factor.

Both Actor and Critic are represented by a ANN, so it is
necessary to define loss functions for both of them. In order
to optimise the Actor network, (5) is used.

L(θ) = min
i=1,2

Qϕi
(st, âθ(st))− αlog(âθ(st)|st)

âθ(st, ξ) = tanh(µθ(st) + σθ(st)⊙ ξ)
(5)

Where âθ represents the parameterised output distribution.

On the other hand, each of the two Critic ANN is updated
according to (6) as its loss function, which represents the mean
squared error between the current estimation and a target one,
represented by a previous copy of the Critic estimating the
values for the next states.

L(ϕi,B) = E
[
(Qϕi

(st, at)− y(rt, st+1, d))
2
]

(6)

y(rt, st+1, d) = rt + γ(1− d)(min
i=1,2

Qϕtargi
(st+1, ât+1)

− αlog(π(at+1|st+1)))
(7)

Where Qϕtarg
(st+1, ât+1) is a target network for one of the

critics.
The complete algorithm used to train SAC is shown in

Algorithm 1. It shows the whole process of gaining experience
and updating the weights of each network after a certain
number of steps.

B. Simple Quaternions

Simple quaternions are an extension of complex numbers
q ∈ H. They are expressed as q = q0 + q1i + q2j + q3k,
with q0, q1, q2, q3 ∈ R and the imaginary units satisfy i2 =
j2 = k2 = −1. Other representations are commonly used,
such as the vectorial form q = (u, ṽ) = (q0, q1i+q2j+q3k).
Some basics operations are listed in Table I considering the
quaternions in the vectorial convention.

Operation Formulation

Real part Re(q1) = u1

Imaginary Part Im(q1) = ṽ1

Addition q1 + q2 = (u1 + u2, ṽ1 + ṽ2)

Multiplication q1 · q2 = (u1u2 − v1v2, u1v1 + u2v2 + v1 × v2)

Conjugate q∗
1 = (u1,−v1)

Module ||q1|| = q1 · q∗
1

TABLE I: Basic operations with simple quaternions given a
pair of them q1 and q2.

Simple quaternions are commonly used in order to repre-
sent rotations in space. To this end, it is necessary that the
quaternion q fulfils the unitary property ||q|| = 1.

C. Dual Quaternions

Dual quaternions are an extension of dual numbers q̂ ∈ H,
which allow to represent translations as well as rotations in
space using a compact formulation defined as q̂ = qr + ϵqd,
with qr, qd ∈ H on the form q = [q0, q1, q2, q3] [20] [21]
[22], where qr is the Primary part, qd is the Dual part, ϵ
represent the dual operator which denotes dual numbers and
satisfies ϵ2 = 0, ϵ ̸= 0. Some basic operations with dual
quaternions are listed in Table II.

They are often used to represent whole frames in Euclidean
space, expressing both a translation and a rotation with fewer
parameters than a homogeneous transformation matrix, for in-
stance. Since dual quaternions are an extension of quaternions,

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on January 09,2025 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

Operation Formulation

Primary part P(q̂1) = qr1

Dual Part D(q̂1) = qd1

Addition q̂1 + q̂2 = qr1 + qr2 + ϵ(qd1 + qd2)

Multiplication q̂1 ⊗ q̂2 = qr1 · qr2 + ϵ(qr1 · qd2 + qd1 · qr2)

Conjugate q̂∗
1 = q∗

r1 + ϵq∗
d1

Module ||q̂1|| = q̂1 ⊗ q̂∗
1

Difference q̂diff = q̂∗
1 ⊗ q̂2

TABLE II: Basic operations with dual quaternions given a pair
of them q̂1 and q̂2.

they are composed of two simple quaternions: one representing
the translation and another to the rotation. Thus, a 6 DOF
transformation is represented by a translation vector t ∈ R3

as the Dual component, expressed as a simple quaternion
with zero real part qt = 0 + txi + tyj + tzk. The rotation
quaternion constitutes the Dual part qr, having as a result a
dual quaternion transformation according to (8).

q̂ = qr + ϵ

(
1

2
qr · qt

)
(8)

IV. EXPERIMENTATION

In this section the hardware setup, as well as the environ-
ment modeling and the training method used to optimize the
neural policies of the agent is presented.

A. Hardware setup

The robot used in this project is the UR5e, an object
manipulation robot arm with 6 DOF. For this reason it is mod-
elled using the Denavit-Hartenberg (DH) formulation for open
kinematic chains [23]. This modelling allows the calculation
of both direct and inverse kinematics of the robot. The former
provides the position of the robot’s end effector given the
values of the manipulator’s joints, while the latter obtains the
joint references to bring the robot to a given pose in Euclidean
space. These computations are performed using homogeneous
transformation matrices that represent the frames for each joint
[24].

On the other hand, the tool used in this project is the Robotiq
3f, an adaptive gripper with three fingers that allows to perform
form closure gripping. It has an internal algorithm that allows
it to adapt to the object being manipulated, although in this
work it is used as a simple gripper that only closes and opens
without considering other functionalities.

In terms of visual feedback, three Intel® RealSense™
D435i are placed in the simulated environment. The first is
on the robot’s wrist, the second is in front of the robot and
the third remains on one side of the environment. In this way,
all the planes of Euclidean space are covered.

Figure 1 shows the complete setup in a simulated envi-
ronment, together with the images from the cameras of the
environment. The robot is placed on the table to reach the
placed objects.

ba

c

d

Fig. 1: Simulated environment. (a) Experimental environment
of the UR5e robotic arm and the Robotiq 3f gripper. Camera
views of the environment. (b) wrist camera, (c) front camera,
(d) side camera.

Fig. 2: Object subset from YCB dataset.

The objects used in this work are those from the YCB
object dataset [25], which provide a wide variety of shapes and
colours for visual recognition and grasping tasks. The subset
used in this work is shown in Figure 2.

B. Environment modeling

The modelling of the environment is a crucial aspect of
the design of a RL agent. It involves defining the states that
the agent will use to compute its actions, which must also be
specified. The reward function is also defined and tuned in
order to guide the agent towards the desired behaviour.

As for the states, the position of the robot’s end effector is
used together with images obtained from the cameras. These
consist of depth and greyscale images of the environment,
both normalised in the range [0, 1] and concatenated as a two-
channel image, to speed up computation and save buffer space
during training.

The actions are modelled as positional increments in the
Euclidean space of the robot’s tool. The values obtained by
the policy are normalised between [−1, 1] and then escalated
and added to each direction of the current position of the end
effector. Inverse kinematics is used to convert the Cartesian
coordinates of the target into joint references.

The reward function is designed to reduce the distance
between the robot’s end effector and the object poses, both
obtained from the simulation. For this reason, dual quaternions
are used to represent both frames; the object q̂obj = qrobj +
ϵqdobj and the wrist of the robot q̂w = qrw + ϵqdw. At each
time step, the difference between two positions q̂t and q̂t−1 is
computed using the operations given in Section III-C, resulting
in the dual quaternion q̂diff = qrdiff + ϵqddiff. This way the
reward function is formulated in 9.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on January 09,2025 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

r(t) =

η tanh

(
1

λrθt+λddt

)
θt < θt−1 ∧ dt < dt−1

−η tanh
(

1
λrθt+λddt

)
θt ≥ θt−1 ∨ dt ≥ dt−1

(9)
Where θt = 2 atan

(
||Im(P(q̂diff))||

Re(P(q̂diff))

)
is the angle repre-

sented by the rotational part of the dual quaternion and
dt = ||q∗

rdiff · qddiff · qrdiff||2 is the module of the imaginary
part of the difference, rotated to be in global coordinates. For
all experiments η = 3, λr = π−1 and λd = 3.5. The hiperbolic
functions aim to limit the distance between [−η, η].

The objective of this functions is to encourage the agent
to take actions that reduce the distance between the end
effector’s and object’s frame, q̂w and q̂obj respectively. If the
robot moves the Primary and Dual part of its frame in the
direction of the object, the reward will be positive. In any other
case, it will be negative. In addition, the reward is inversely
proportional to the distance from the object in the timestamp t.
For instance, if the robot is far from the objective and takes an
action that leads it farther, the agent will get a negative reward.
That penalisation will be smaller than when taking the same
action from a closer distance. The same occurs when taking
positive actions; movements that reduce the distance to the
object will produce greater rewards the closer the frames are.

C. Training method

The approach used to train the agent is similar to that of the
CL. First, an agent is pre-trained with only one object in the
environment, as this allows it to learn the task more quickly.
Then the policy is trained again using the weights learned for a
single object, but using a subset of the YCB dataset, including
the former. All the training and experiments are conducted in
simulation, concretely in PyBullet.

After a certain number of steps, the model is saved and
50 validation episodes are run in which the actions are not
sampled. Instead, they are obtained deterministically directly
from the mean of the output distribution.

V. RESULTS AND DISCUSSION

The aim of these experiments is to show that using dual
quaternions when computing the reward of a RL agent can
lead to better policies than using Euler angular distances with
the XYZ convention and without movement restrictions. Both
tasks are considered for evaluation; reach and manipulation.

A. Reach task

The Reach Task is evaluated using the dual quaternion
distances presented in 9, which serve as a measure of the
accumulated reward during an episode. This dual quaternion
distance has no measurement units, although it is normalised
between 0 and 1. In the case of Euler angles, the norm between
the position and rotation difference of the object and the
robot’s wrist is used to compute the distance.

As it can be seen in Figure 3, the agent trained with the
dual quaternion reward obtains larger rewards during training

Fig. 3: Reward accumulated for the agents trained with reward
functions formulated in Dual Quaternions (DQ) and Euler with
linear distance (EULER). The results are obtained combining
3 complete training processes for each case.

Linear
distance (m)

Angle
distance (rad)

Linear
reward agent

0.71 1.45

Dual Quaternion
reward agent

0.11 0.80

TABLE III: Error obtained between the robot’s end effector
and the object poses at the end of an episode.

than the one trained with linear distance and Euler angles. Dual
quaternions allow the distance between states to be represented
in a more compact way than with the linear option and
unambiguously. This leads to better representation of rotations,
as the agent is often correctly positioned but misoriented in
the case of the Euler agent.

Table III shows the error committed by the best agent trained
with each reward function taking into account that the error
is expressed as the distance between frames at the end of an
episode. The dual quaternion option allows to reduce the linear
distance between the poses, as well as the difference between
the Euler angles. The results are obtained by averaging the
error of 50 evaluation episodes.

B. Manipulation task

The Manipulation Task includes an additional step: once
the robot’s end effector has reached a final state in terms of
pose, the gripper is closed until contact is detected, assuming
it is in a suitable state. After this action, the robot moves the
object to the initial position of the sequence. If the object is
manipulated without falling, it is considered a success.

This grasping technique depends to a large extent on the
position reached by the robot at the end of the episode.
Therefore, the agent that can reach a more precise position
will be able to manipulate the object better. For this reason, the
one trained with the dual quaternion reward function achieves
higher results in these manipulation tasks, as shown in Figure
4, where the agents try to grasp a random object from the
YCB dataset during 50 episodes.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on January 09,2025 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Success rate of both agents in the Manipulation Task
with DQ reward and EULER reward.

VI. CONCLUSION

In this work, an agent trained using RL techniques has been
proposed to solve reach techniques that generate trajectories
for the robotic arm. The reward has been designed using a
dual quaternion parametrization in order to avoid defining
excessive restrictions that would make the formulation hard
to understand. The experiments show promising results when
this representation is used against others, such as Euler. More-
over, dual quaternion representations allow to interpolate and
express frames in space without worrying about singularities.

Furthermore, by tackling the Reach Task and then applying
classical control techniques to manipulate the objects, we can
significantly reduce the training time and the computational
resources used for this process.

Nevertheless, this work has a lot of potential. Dual quater-
nions are used in many tasks other than reaching, such as
pushing or completing manipulations, which can be explored
following this research. In addition, this formulation is planned
to be extended into real world environments so as to test the
performance of the proposed method, as well to check the
sim2real gap (if exists) on this scenario.

REFERENCES

[1] S. Nahavandi, R. Alizadehsani, D. Nahavandi, C. P. Lim, K. Kelly,
and F. Bello, “Machine learning meets advanced robotic manipulation,”
Information Fusion, pp. 1–27, 2024. doi: 10.1016/j.inffus.2023.102221

[2] D. Han, B. Mulyana, V. Stankovic, and S. Cheng, “A survey on deep
reinforcement learning algorithms for robotic manipulation,” Sensors,
pp. 1–35, 2023. doi: 10.3390/s23073762

[3] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang, “Dexpoint:
Generalizable point cloud reinforcement learning for sim-to-real
dexterous manipulation,” in Proceedings of The 6th Conference on
Robot Learning. PMLR, 2023, pp. 594–605. [Online]. Available:
https://proceedings.mlr.press/v205/qin23a.html

[4] T. Lindner, A. Milecki, and D. Wyrwał, “Positioning of the robotic
arm using different reinforcement learning algorithms,” International
Journal of Control, Automation and Systems, pp. 1661–1676, 2021. doi:
10.1007/s12555-020-0069-6

[5] A. Lobbezoo and H.-J. Kwon, “Simulated and real robotic reach, grasp,
and pick-and-place using combined reinforcement learning and tradi-
tional controls,” Robotics, p. 12, 2023. doi: 10.3390/robotics12010012

[6] R. Morimoto, S. Nishikawa, R. Niiyama, and Y. Kuniyoshi, “Model-free
reinforcement learning with ensemble for a soft continuum robot arm,”
in 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft),
2021, pp. 141–148. doi: 10.1109/RoboSoft51838.2021.9479340

[7] S. Luo, H. Kasaei, and L. Schomaker, “Accelerating reinforcement
learning for reaching using continuous curriculum learning,” in 2020
International Joint Conference on Neural Networks (IJCNN), 2020, pp.
1–8. doi: 10.1109/IJCNN48605.2020.9207427

[8] A. Bassich and D. Kudenko, “Continuous curriculum learning
for reinforcement learning,” in Proceedings of the 2nd Scaling-
Up Reinforcement Learning (SURL) Workshop. IJCAI, 2019. doi:
10.48550/arXiv.2003.04960

[9] P. Shukla, H. Kumar, and G. C. Nandi, “Robotic grasp manipulation us-
ing evolutionary computing and deep reinforcement learning,” Intelligent
Service Robotics, pp. 61–77, 2021. doi: 10.1007/s11370-020-00342-7

[10] P. Aumjaud, D. McAuliffe, F. J. Rodrı́guez-Lera, and P. Cardiff, “Re-
inforcement learning experiments and benchmark for solving robotic
reaching tasks,” in Advances in Physical Agents II, vol. 1285. Springer
International Publishing, 2021, pp. 318–331. doi: 10.1007/978-3-030-
62579-5 22

[11] A. Iriondo, E. Lazkano, A. Ansuategi, A. Rivera, I. Lluvia, and C. Tubı́o,
“Learning positioning policies for mobile manipulation operations with
deep reinforcement learning,” International journal of machine learning
and cybernetics, pp. 3003–3023, 2023. doi: 10.1007/s13042-023-01815-
8

[12] R. Srivastava, R. Lima, R. Sah, and K. Das, “Deep reinforcement
learning based control of rotation floating space robots for proximity
operations in pybullet,” in 2023 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2023, pp. 1224–1229. doi:
10.1109/SMC53992.2023.10394028

[13] D. Zhou, R. Jia, H. Yao, and M. Xie, “Robotic arm motion planning
based on residual reinforcement learning,” in 2021 13th International
Conference on Computer and Automation Engineering (ICCAE), 2021,
pp. 89–94. doi: 10.1109/ICCAE51876.2021.9426160

[14] A. A. Shahid, D. Piga, F. Braghin, and L. Roveda, “Continuous
control actions learning and adaptation for robotic manipulation through
reinforcement learning,” Autonomous Robots, pp. 483–498, 2022. doi:
10.1007/s10514-022-10034-z

[15] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schul-
man, E. Todorov, and S. Levine, “Learning complex dexter-
ous manipulation with deep reinforcement learning and demonstra-
tions,” Robotics: Science and Systems (RSS), pp. 1–9, 2018. doi:
10.15607/RSS.2018.XIV.049

[16] J. Pitz, L. Röstel, L. Sievers, and B. Bäuml, “Dextrous tactile in-
hand manipulation using a modular reinforcement learning architecture,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023, pp. 1852–1858. doi: 10.1109/ICRA48891.2023.1016075

[17] J. Achiam and P. Abbeel, “Openai: Spinning up in deep rl,” 2018.
[Online]. Available: https://spinningup.openai.com/en/latest/

[18] T. Simonini and O. Sanseviero, “The hugging face
deep reinforcement learning class,” 2023. [Online]. Available:
https://github.com/huggingface/deep-rl-class

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochas-
tic actor,” in International Conference on Machine Learning (ICML).
PMLR, 2018, pp. 1861–1870. doi: 10.48550/arXiv.1801.01290

[20] B. Kenwright, “A beginners guide to dual-quaternions: What they are,
how they work, and how to use them for 3d character hierarchies,” 20th
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision, pp. 15–24, 2012. [Online].
Available: http://wscg.zcu.cz/WSCG2012/! 2012-Journal-Full-1.pdf

[21] F. Thomas, “Approaching dual quaternions from matrix alge-
bra,” IEEE Transactions on Robotics, pp. 1037–1048, 2014. doi:
10.1109/TRO.2014.2341312

[22] Y.-B. Jia, “Dual quaternions,” Iowa State University: Ames, IA, USA,
pp. 1–15, 2013. [Online]. Available: https://faculty.sites.iastate.edu/jia/
files/inline-files/dual-quaternion.pdf

[23] P. I. Corke, “A simple and systematic approach to assigning de-
navit–hartenberg parameters,” IEEE Transactions on Robotics, pp. 590–
594, 2007. doi: 10.1109/TRO.2007.896765

[24] U. Robots, “Dh parameters for calculations of
kinematics and dynamics,” 2024. [Online]. Available:
https://www.universal-robots.com/articles/ur/application-installation/
dh-parameters-for-calculations-of-kinematics-and-dynamics/

[25] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa,
P. Abbeel, and A. M. Dollar, “Yale-cmu-berkeley dataset for robotic
manipulation research,” The International Journal of Robotics Research,
pp. 261–268, 2017. doi: 10.1177/0278364917700714

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on January 09,2025 at 12:01:15 UTC from IEEE Xplore. Restrictions apply.

