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Abstract. With the advancement of computing resources, an increas-
ing number of Neural Networks (NNs) are appearing for image detection
and segmentation appear. However, these methods usually accept as in-
put a RGB 2D image. On the other side, Light Detection And Ranging
(LiDAR) sensors with many layers provide images that are similar to
those obtained from a traditional low resolution RGB camera. Following
this principle, a new dataset for segmenting cars in pseudo-RGB images
has been generated. This dataset combines the information given by the
LiDAR sensor into a Spherical Range Image (SRI), concretely the reflec-
tivity, near infrared and signal intensity 2D images. These images are
then fed into instance segmentation NNs. These NNs segment the cars
that appear in these images, having as result a Bounding Box (BB) and
mask precision of 88% and 81.5% respectively with You Only Look Once
(YOLO)-v8 large. By using this segmentation NN, some trackers have
been applied so as to follow each car segmented instance along a video
feed, having great performance in real world experiments.

Keywords: Artificial Intelligence · Mobile Robots · Neural Networks ·
Instance Segmentation · LiDAR · YOLO.

1 Introduction

The first Artificial Intelligence (AI) models date back to 1943 [9]. Initially, the
goal was to simulate the function of a single neuron. Since then, several advances
have led to the development of more complex structures, the most recent of which
are data storage [6] and Graphics Processing Units (GPUs) [3], in 2006 and 2010
respectively.

Regarding object detection and segmentation methods, there are three dif-
ferent approaches; single, two and multi-stage methods [5]. Among them, the
first one is the one that receives more attention, since they are usually faster
[14], allowing to have inference times close to realtime. Some examples of these
single-stage methods are You Only Look Once (YOLO) or Single Shot Detector
(SSD) [8].
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Normally, these methods require a RGB image as input. However, variations
have been introduced in recent years that allow the input of pseudo-RGB images
generated from Light Detection And Ranging (LiDAR) sensors. For example, [4]
uses a combination of RGB and LiDAR images to perform object detection by
first identifying regions of interest in the LiDAR point cloud. Using these regions,
an RGB image is extracted from the original RGB image and used as input to
a YOLO Neural Network (NN), which finally detects the cars. Although this
method gives good results, it requires the handling of LiDAR and RGB images
and does not detect objects accurately. Other papers, such as [10], generate
a pseudo-RGB image from a LiDAR sensor. This is used to detect and track
pedestrians across the image. To do this, they slide the Bounding Box (BB) in
5 parts to build the descriptor. However, it only performs object detection, not
segmentation, using an old YOLO distribution, since at the time of submission
new YOLO distributions had appeared. Finally, [19] generates a pseudo-RGB
image from a LiDAR sensor in a similar way. Using detection and segmentation
methods, they achieve good results in both indoor and outdoor environments.
However, the need to pre-process the image from 2048*128 to 1000*300 and the
small number of images and instances in their dataset question the quality of
the results obtained.

In this work, we perform the segmentation of car instances on Spherical
Range Images (SRIs), obtained by combining three different channels from a
LiDAR sensor, with several single-stage methods from the YOLO family.

The main contributions of this work are:
– A new dataset for segmenting cars in pseudo-RGB 2D images has been gen-

erated. These images are SRI obtained by combining several channels from
a LiDAR sensor.

– Several State Of The Art (SOTA) NN instance segmentation methods have
been trained on the aforementioned dataset, achieving almost 90% in BB
detection and more than 80% in mask segmentation.

– Once the best instance segmentation was obtained, a tracker was incorpo-
rated, achieving excellent results without affecting real-time inference.

This paper is organised as follows: Section 2 introduces both the image gener-
ation process and the segmentation NNs used, Section 3 shows the experimental
setup of the system, Section 4 shows the results obtained on the test set and also
on completely new real world scenarios and Section 5 summarises the results of
the paper, as well as introduces the main lines of future works.

2 Methodology

In this Section, the process used to generate the images and the segmentation
NNs that were used in Sec. 3 are presented.

2.1 Image generation

Generating images from a LiDAR sensor involves two steps. In the first one,
a pseudo-RGB pointcloud is generated from the data provided by the LiDAR,
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and in the second one, the previously generated pointcloud is transformed into
a SRI.

For the first process, data is obtained from the LiDAR sensor. The used
sensor provides 4 different 2D images: near infrared photons, range information,
calculated calibrated reflectivity and signal intensity photons images. From them,
a pseudo-RGB point cloud is generated by combining the calculated calibrated
reflectance, NIR photon and signal intensity photon images.

For the second one, the generated pointcloud is transformed into a SRI. Since
the used LiDAR has enough resolution, no interpolation or filtering process is
needed to generate the final SRI [17].

An example of the process of combining the LiDAR channels to produce the
final pseudo-RGB SRI is shown on Fig. 1.

Pseudo-RGB 
SRI

Intensity
(It)

Reflectivity
(Rg)

Infrared
(If)

Ouster OS1-128 
LiDAR

Fig. 1. Combination of LiDAR channels for generating the pseudo-RGB image.

2.2 Segmentation NNs

A fast but accurate method is required to perform instance segmentation. For
this purpose, single-stage SOTA methods such as YOLO-v5 [7], YOLO-v7 [18]
and YOLO-v8 [16] were chosen.

YOLO-v5 appeared online on 2020. This model was the first in the YOLO
NNs family to support instance segmentation, as well as being released by a
private company. There is not much hindsight on this model, as no official paper
was published. But it seems that the anchor box selection process was built into
the model, allowing it to automatically learn the most appropriate size for each
dataset [20].
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YOLO-v7 appeared online on 2022, but the paper was published in 2023.
They introduced a trainable bag-of-freebies, a new reparametrization module,
and a composite scaling method. All these features were used to achieve an im-
provement in the loss function, label assignment, support for multiple architec-
tures, or a good trade-off between network parameters, computation, inference
speed, and accuracy.

YOLO-v8 also appeared online on 2022, but later than YOLO-v7, having its
paper publication in 2024. To improve on previous versions, a new loss function
called focal loss, a new data enhancement method called mixup [21], and a new
evaluation metric called Average Precision Across Scale (APAS) were introduced.
These allow to focus on complex images instead of simple ones, to improve the
generalisation and strength of the model by merging images and labels, and to
ensure the accuracy of the model over different scales.

3 Experiments

In this Section, the elements used for the execution of the experiments are pre-
sented, as well as details generated dataset. The NNs training procedure and the
results obtained are shown in the next section.

3.1 Setup

The Ouster OS1-128 3D-LiDAR was used to obtain the dataset. This sensor is
mounted on the roBot for Localization in Unstructured Environments (BLUE)
robot, a mobile robotic platform designed by the research group several years
ago [12,13], but which is still being updated today [2]. The NNs was trained on
a computer with a NVIDIA DGX-A100 Tensor Core GPU with 40GB of RAM.
For data acquisition and inference, an on board computer with an AMD Ryzen
7 5700G as Central Processing Unit (CPU), a NVIDIA RTX 3060 with 12 GB
as GPU and 32 GB of Random-Access Memory (RAM) was used. The BLUE
robot with Ouster OS1-128 3D-LiDAR and on board computer is shown in Fig.
2.

3.2 Dataset

After obtaining the data from the LiDAR sensor and converting it to a SRI, 400
images were obtained, each with approximately 14 car instances. These images
contain different outdoor environments from the University of Alicante and have
a resolution of 2048x128 pixels. The cars appearing in the images were labelled
using the LabelMe [15] tool. These generated labels include a special encoding
used to generate YOLO NNs to understand that a partially occluded object
belongs to the same instance, so that it is included in the same BB and mask
instance.

The generated dataset has been divided into training/validation/test sets
according to the 85/10/5 ratio. A summary of the generated dataset can be
found in Table 1. This dataset is available online at LICAR dataset.

https://www.iuii.ua.es/licar/index.html
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Ouster OS1-128 
3D-LiDAR

On board computer

Fig. 2. BLUE robot with both the Ouster OS1-128 3D-LiDAR and the on board com-
puter.

Table 1. Generated dataset specifications.

Set Images Instances
Train 340 4784

Validation 40 569
Test 20 299

3.3 NN training

All trainings were performed using transfer learning from previously trained
models provided by each NN model, as it has shown to improve model accuracy
while training the models in [11].

YOLO-v5 was trained for 300 epochs with a batch size of 128 and 8 workers,
using a single channel rectangular image with an image size of 2048 pixels as
the longest side. YOLO-v7 was trained for 100 epochs with a batch size of 64
and only 1 worker, also using single channel rectangular images of 2048 pixels.
YOLO-v8 was trained for 100 epochs with a batch size of 256, using again the
single channel rectangular 2048 pixel rectangular image.

The rest of the used parameters used in each case are the default ones pro-
vided by each of the models as recommended parameters for performing training
of instance segmentation models.

4 Results

This section presents the results of the experiments described on Section 3.
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4.1 Test set

After training the aforementioned models using the training and validation sets,
the final results are obtained. The test set contained 20 images with 299 in-
stances, representing all types of data used during the training process. How-
ever, in order to have a fair comparison, some parameters of the used NNs are
given in Table 2, as well as the computation times per image (executed in the
onboard BLUE computer with a NVIDIA RTX 3060 GPU). These computation
times are expressed as the sum of three values, which consist of the time spent
during preprocess, inference and postprocess steps. So, for example, YOLO-v7
has a similar number of layers to YOLO-v8 medium, but is between YOLO-v8
medium and YOLO-v8 large in terms of the number of parameters. Another ex-
ample is YOLO-v5, which has fewer layers than YOLO-v8 nano, but is between
YOLO-v8 small and YOLO-v8 medium in terms of parameters.

Table 2. Some NN specifications.

NN Speed (ms) Number of layers Number of parameters
YOLO-v8 nano 0.3+6.5+0.5 261 3263811
YOLO-v8 small 0.3+8.3+0.5 261 11790483

YOLO-v8 medium 0.3+18.2+0.6 331 27240227
YOLO-v8 large 0.3+28.7+0.5 401 45912659

YOLO-v7 0.9+23.7+0.7 325 37842476
YOLO-v5 medium 0.9+15.9+0.7 220 21652358

The results for BB detection and mask segmentation are shown in Table 3
and 4 respectively. In terms of BB detection, YOLO-v8 medium and large have
very close results, with the precision being higher for the YOLO-v8 large model.
However, when moving to the mask segmentation task, YOLO-v8 would be the
model with the best results in 3 out of the 4 metrics evaluated.

Also, all the trained models fall within the real-time specification, as their
computation time should be between 33.3 and 66.6 ms for 30 and 15 Frames Per
Second (FPS). So our final choice is YOLO-v8 large.

Table 3. Results in BB detection.

NN Precision Recall mAP @0.5 mAP@0.5-0.95
YOLO-v8 nano 0.858 0.756 0.85 0.589
YOLO-v8 small 0.836 0.832 0.871 0.633

YOLO-v8 medium 0.824 0.832 0.888 0.654
YOLO-v8 large 0.88 0.811 0.881 0.649

YOLO-v7 0.81 0.823 0.87 0.62
YOLO-v5 medium 0.783 0.835 0.849 0.587
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Table 4. Results in mask segmentation.

NN Precision Recall mAP @0.5 mAP@0.5-0.95
YOLO-v8 nano 0.795 0.676 0.758 0.448
YOLO-v8 small 0.77 0.749 0.803 0.471

YOLO-v8 medium 0.782 0.732 0.807 0.477
YOLO-v8 large 0.815 0.751 0.826 0.509

YOLO-v7 0.803 0.679 0.769 0.474
YOLO-v5 medium 0.831 0.605 0.732 0.431

Some images of the test subset segmented by YOLO-v8 large can be seen in
Fig. 3. As can be seen, cars are correctly segmented in both near and far distance
in all images, representing the 360 degrees of the LiDAR sensor Field Of View
(FOV).

Fig. 3. Some samples from test set segmented by YOLO-v8 large.

4.2 Real experiments

Once the best segmentation method was found, it was tested in a completely new
and unseen environment. Also some trackers like BoT-SORT [1] and ByteTrack
[22] were added to keep the position of different segmented instances across
frames on a video. Some frames of a sample video using the BoT-SORT tracker
are shown in Fig. 4. This tracker was chosen over ByteTrack because it represents
an evolution, including some improvements such as a camera compensation based
feature tracker and a suitable Kalman filter.

Fig. 4. Several frames running YOLO-v8 large using BoT-SORT as tracker.

https://youtu.be/FNemm0QZXo4
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BoT-SORT was used with 0.7 as the threshold for first and second association,
0.75 as the threshold for initialising a new track if the detection does not match
any previous track, 20 as the buffer size for removing tracks and 0.8 as the
threshold for matching tracks.

5 Conclusion

This paper presents the segmentation of instances in SRI using several single-step
methods such as YOLO-v5, YOLO-v6 and YOLO-v8. Specifically, the aim was to
detect cars in pseudo-RGB images obtained from a LiDAR sensor by combining
several of the different channels available. The results have shown that it is
possible to perform instance segmentation in a LiDAR image using YOLO-v8
large, having a precision of 81.5%. This model provided the best accuracy in
mask segmentation, allowing real-time inference on BLUE’s on-board computer
and the mobile robot to segment cars in outdoor environments.

Future work will consist of using the designed system to segment different
types of objects, as well as designing a new method for calibrating LiDAR and
the camera using the segmented masks obtained with this method.
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